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Chapter 13
Fisher Ideal Output, Input and
Productivity Indexes Revisited·

W.E. Diewert

1. Introduction

317

The basic purpose of this paper is to explain how productivity change can be
measured for a firm under ideal circumstances.

If a firm produces only one output and ut.ilizes only one input. during each
accounting period, then it is straightforward t.o define the productivity change
for the firm between two periods. Let y' > 0 denote the quantit.y of out.put
produced during period t and let Zl > 0 denote t.he quantity of input utilized
by the firm during period t for t = 0, 1. Then the productivity change going
from period 0 to 1 may be defined by:

(1) Pr(xO,x1,yO,yl) == (yIJyO)J(x1JxO);

i.e., the productivity change is the firm's output ratio divided by its input
ratio. Thus if output grows faster (slower) than input, Pr will be greater than
one (less than one) and we say that the firm has experienced a productivity
improvement (decline).

However, all firms utilize more than one input and virtually all firms pro­
duce more than one output. A basic research question is: how can definition
(1) be generalized to the case of a multiple output, multiple input firm?

We shall take several different approaches to answering the above ques­
tion. In our first approach, we replace the output ratio by an output quantity
index, Q(pO, pi, yO, yl), and replace the input ratio by an input quantity index,
Q•(0 1 ° I) h I - ( I ') d I - ( It) th tw ,w ,z ,X ,were p = PI, ... ,PM an Y = YI""'YM are e ou-
put price and quantity vectors pertaining to period t and w' == (wi, . .. ,w1v)
and zl == (zi, ... I z1v) are the input price and quantity vectors pertaining to

*First published in the Journal of Productivity Analysis, Vol. 3, No.3, 1992,
pp. 211-248. This research was supported by a Strategic Grant from the So­
cial Science and Humanities Research Council of Canada. The author thanks
M. Denny and A. Nakamura for comments.
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period t for t = 0, 1. Note that the index number functions Q and Q. de­
pend on the relevant quantity vectors for the two periods but they also use the
corresponding price vectors as a means of weighting the quantities.

The problem with this index number approach is that we must specify
concrete functional forms for the quantity indexes Q and Q•. Four commonly
used functional forms for Q are the Laspeyres quantity index Q£, the Paasche
quantity index Qp, the Fisher ideal quantity index QF and the translog or
Tornqvist quantity index QT defined by (2) - (5) below: 1

where s: :: p:y:!pl.yl is the period t revenue share of output i. Note that QF =
(Q£Qp)1/2; i.e., the Fisher ideal quantity index is the geometric mean of the
Laspeyres and Paasche quantity indexes. Input quantity indexes QL Qp, Qj;.
and QT can be defined in a manner analogous to (2) - (5), except that input
prices and quantities, WI and xl, replace the output prices and quantities, pI

and yl.

In Sections 2 and 3 below, we use the test or axiomatic approach to index
number theory to determine the functional forms for Q and Q•. This approach
dates back to C.M. Walsh [1901] [1921] and Irving Fisher [1911] [1921] [1922]
but in more recent times, the main contributors have been Eichhorn [1976)

IThe Laspeyres quantity index matches up with the Paasche [1874] price in­
dex while the Paasche quantity index matches up with the Laspeyres [1871]
price index. Bowley [1921; 203] advocated the use of the Laspeyres quantity
index to measure output change in the production context. The "ideal" prop­
erties of QF were stressed by Fisher [1922]. The quantity index QT is first
mentioned in Fisher [1922; 473] where it is the quantity index which corre­
sponds to price index number 124, but Tornqvist [1936] was the first to stress
its favorable properties. Christensen and Jorgenson [1970] used QT and QT
as discrete time approximations to the continuous time Divisia [1926] indexes
while Solow [1957] used Ql as a discrete approximation to the Divisia index of
inputs. Diewert [1976a; 118-120] showed that QT corresponded to a translog
aggregator function introduced by Christensen, Jorgenson and Lau [1971] and
so Jorgenson and Nishimizu [1978] called QT the translog quantity index. No-
'. _T_"MtatlOn. p' y - p y = L..om=l PmYm'

(2)

(3)

(4)

(5)

QL(PO, pl, yO, y1) :: pO . yl Jpo . yO;

Qp(pO,pl,yO,yl)::pl.ylJpl.yO;

Q F(pO, pl, yO, y1) :: (po. y1 pl . yl Jpo . yOp1 . yO)l/2;

QT(po, pl, yO, yl) :: IT:
l
(Ylly?)('?+.D/2

[1978b] and his co-workers; sec Eichhorn and Voeller [1976] and Funke and
Voeller [1978] [1979].

In Section 2, we list some twenty tests or mathematical properties that
have been suggested as desirable for an output quantity index Q(pO, p1, yO, y1)
and in Section 3, we show that the Fisher ideal quantity index QF defined by
(4) above is the unique function which satisfies all of these tests. Thus, our
first approach to the measurement of productivity change in the multiple input
and output case leads to the Fisher index of productivity change PrF defined
by:

(6) P ( 0 1 ° 1 ° 1 ° 1) _ Q (0 1 ° l)JQ. (0 1 ° 1)rF P ,p ,y ,y ,W ,W ,x ,x = F P ,p ,y ,y F W ,W ,x ,x .

In the remainder of the paper, we consider economic approaches to the con­
struction of input, output and productivity indexes. In economic approaches,
the assumption of optimizing behavior is always used; i.e., we assume that the
firm competitively minimizes costs, maximizes revenues or maximizes profits.
In the test or axiomatic approach, no assumption about optimizing behavior is
required and this can be an advantage of the approach.

Our first economic approach to the measurement of productivity change
is contained in Sections 4 and 5. It is well known that the technology of a firm
can be represented in several alternative ways; e.g., by production functions,
variable profit functions or by distance functions. 2 In Section 5, we represent
the technology of the firm in period t by a specific functional form for its
variable profit function. We then show that the shift in the technology can
be computed exactly using a function of observable prices and quantities - in
fact, the Fisher productivity index defined by (6) does the job. In Section 4, we
show that the specific functional forms for the profit functions used in Section 5
are generalizations of a functional form for a variable profit function that is
flexible;3 i.e., the functional form can provide a second order approximation to
an arbitrary twice continuously differentiable variable profit function. Thus, the
Fisher index of productivity change defined by (6) turns out to be a superlative4

index of productivity change.
Sections 6 and 7 of the paper present economic justifications for the use

of the Fisher output and input indexes, QF and Qj;. respectively, that are
analogous to the economic justifications for the use of the translog output and
input indexes, QT and QT' that were presented by Caves, Christensen and
Diewert [1982b; 1395-1401].

2See Gorman [1968b], Diewert [1973a], Blackorby, Primont and Russell [1978]
and McFadden [1978].
3The term "flexible" is due to Diewert [1974a; 113].
4Diewert [1976a; 117] used the term "superlative" to describe an index number
formula that was exact for a flexible functional form.
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and its corresponding price index P(pO, pi, yO, yl). Thus we want to find two
functions of the 4M variables, pO == (p~, ... ,p~), pi == (pL ... ,p},t), yO ==
(yr, ... ,YXt) and yl == (yt, .. . ,Y1) (which are the price and quantity vectors
pertaining to periods 0 and 1), P(pO, pi , yO, yl) and Q(pO, pi , yO, yl ), which
decompose the value change between the two periods, pi . yl jpO . yO, into a
price change part P and a quantity change part Q; i.e., we want P and Q to
satisfy the following equation:6

6Frisch [1930; 399] called (8) the product test. The concept of this test was due
to Fisher [1911; 418].
7Frisch [1930; 400] assumed differentiability which implies continuity. Also
Eichhorn [1978b; 165] made a weaker continuity assumption.
S "A formula which can be shown to be especially erratic, as compared with
other formulae, has been called freakish" (Fisher [1922; 207]). Also Fisher
[1922; 114-115] disapproved of medians and modes because of their insensitivity
to possibly large changes in the data and their violent change to possibly small
changes in the data.

If M =1, so that there is only one output, then a natural candidate for
P is pUp~, the single price ratio, and a natural candidate for Q is yUy~, the
single quantity ratio.

Note that if either P or Q is determined, then the remaining function Q or
P may be defined implicitly or residually using equation (8). Since historically
researchers first concentrated on the determination of P, we shall also attempt
to determine the functional form for P with the understanding that once P has
been determined, Q may be determined using (8).

What index number theorists have done over the years is propose prop­
erties or tests that P should satisfy. These properties are generally multi­
dimensional analogues to the one good price index formula, pUp~. Below, we
list twenty tests along with the names of the researchers who have proposed
the corresponding tests.

We shall assume that every component of each price and quantity vector
is positive; i.e., pI :::t> OM and yl :::t> OM for t =0,1. If we want to set yO =yl,
we shall call the common quantity vector y; if we want to set pO = pi, we call
the common price vector p.

PT1: Positivity: P(pO, pi, yO, yl) > O. Eichhorn and Voeller [1976; 23]
suggested this test.

PT2: Continuity: P(pO, pI, yO, yl) is a continuous function of its argu­
ments.

This test does not seem to have been formally suggested in the literature.7

However, Irving Fisher [1922; 207-215] seems to have informally suggested the
essence of this test.s

In Section 8, a similar economic approach to productivity indexes is devel­
oped, except that the firm's technology is represented by an output distance
or deflation function instead of a variable profit function. Again we obtain a
strong economic justification for the use of the Fisher productivity index (6).

The above economic approaches to productivity indexes, relying on the
theory of exact and superlative indexes, are analogous to the approaches used
by Diewert [1976a; 124-127]5 (1980; 491-493] [1983b; 1077-1083] and Caves,
Christensen and Diewert [1982b; 1401-1408]. In fact, under the hypothesis
of a constant returns to scale technology, Caves, Christensen and Diewert
[1982b; 1406] present a strong economic justification for the use of the fol­
lowing Tornqvist or translog productivity index to measure the shift in the
technology:

(7) P ( 0 I 0 I 0 I ° I) _ Q (0 I 0 I )/Q* (0 I ° I)rT P ,p ,y ,y ,w ,w ,x ,x = T P ,P ,y ,y T W ,W ,x ,x

where QT is the translog output index defined by (5) and QT is the analo­
gous translog input index. The productivity change index (7) has been used
by Christensen and Jorgenson [1970], Jorgenson and Griliches [1972] and the
Bureau of Labor Statistics in their recent work on multifactor productivity; see
Mark and Waldorf [1983; 15]. The results in Sections 5 and 8 below present
equally strong economic justifications for the use of the Fisher productivity
index PrF defined by (6).

Since PrT and PrF have equally valid economic justifications, the results
of Section 3 nudge us in the direction of preferring PrF over PrT, since from
the viewpoint of the test approach to index numbers, the Fisher index QF
seems preferable to the translog index QT.

Section 9 concludes.

2. The Axiomatic or Test Approach to Index Number Theory

As we mentioned in the introduction, we want to use the test approach to index
number theory in an attempt to determine the functional forms for the quantity
indexes Q and Q*. We shall concentrate our attention on the determination of
the output index Q(pO, pi, yO, yl); the theory for the input quantity index Q*
is analogous.

Instead of trying to directly determine the functional form for the quantity
index Q, it turns out to be more convenient to simultaneously determine Q

IiThis approach was not satisfactory since it assumed separability between in­
puts and outputs. For discussions on separability concepts, see Blackorby,
Primont and Russell (1978].

(8) P(pO, pi, yO, yl )Q(po, pi ,yO, yl) = pi . yl/pO . yO.
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PT3: Identity or C07lstant Prices Test: P(p, p, yO, yl) = 1; i.e., if the
price of every good is identical during the two periods, then the price index
should equal unity, no matter what the quantity vectors are. Laspeyres [1871;
308J, Walsh [1901; 308] and Eichhorn and Voeller [1976; 24] have all suggested
this test.

PT4: Tabular Standard, Basket or C07lstant Quantities Test; P(pO ,pi, y, y)
=pI . y/po . y; i.e., if quantities are constant during the two periods so that
yO =VI =V, then the price index should equal the expenditure on the constant
basket in period 1, pl. V, divided by the expenditure on the basket in period 0,
pO. y.

The origins of this test go back at least two hundred years to the Mas­
sachusetts legislature which used a constant basket of goods to index the pay of
Massachusetts soldiers fighting in the American Revolution; see Willard Fisher
[1913]. Other researchers who have suggested the test over the years include:
Lowe [1823; Appendix, 95], Scrope [1833; 406], Sidgwick [1883; 67-68], Jevons
[1884; 122] originally published in 1865, Edgeworth [1925; 215] originally pub­
lished in 1887, Marshall [1887; 363], Pierson [1895; 332] Walsh [1901; 540]
[1921; 544], Bowley [1901; 227], Pigou [1912; 38], Frisch [1936; 6], Vogt [1978;
132] and Funke [1988j 103]. Scrope [1833; 407] was the first to use the term
"tabular standard" while Edgeworth [1925; 331) used the term "consumption
standard" to describe the test. Vogt [1978; 132) called the test the "Wertin­
dextreue Test" and Funke [1988; 103] translated this German terminology into
the "Value Ratio Preserving Test."

PT5: Proportionality in Current Prices; P(pO, ApI, yO, VI) = AP(pO, pI,
yO, yl) for scalars A > 0; i.e., if all period 1 prices are multiplied by the positive
number A, then the new price index is Atimes the old price index.

This test was proposed by Walsh [1901; 385], Eichhorn and Voeller [1976;
24] and Vogt [1980; 68).

Walsh [1901] and Irving Fisher [1911; 418J [1922; 420J proposed the related
proportionality test P(p, Ap, yO, VI) = A. This last test is a combination of PT3
and PT5; in fact Walsh [1901; 385) noted that this last test implies the identity
test, PT3.

PT6: Inverse Proportionality in Base Prices (Homogeneity of Degree
Minus One in Base Prices): P(>.po ,pI, VO,yl) = >.-1 P(pO ,pI, yO, yl) for all
A> 0; i.e., if all period aprices are multiplied by the positive number ..\, then
the new price index equals the old price index divided by..\. Eichhorn and
Voeller [1976; 28] suggested this test.

The next seven tests are invariance or symmetry tests. Fisher [1922; 62-63
and 458-460] and Walsh [1921; 542] seem to have been the first researchers to
appreciate the significance of these kinds of tests. Fisher [1922; 62-63] spoke
of fairness, but it is clear that he had symmetry properties in mind. It is
perhaps unfortunate that he did not realize that there were more symmetry

and invariance properties than the ones he proposed; if he had realized this, it
is likely that he would have been able to characterize axiomatically his ideal
price index, as we shall do below in Section 3.

PT7: Invariance to Proportional Changes in Current Quantities (Homo­
geneity of Degree Zero in Current Quantities): p(pO,pl,VO,..\VI ) = p(pO,pl,
VO, VI) for all A > 0; i.e., if current period quantities are all multiplied by the
number ..\, then the price index remains unchanged. Vogt [1980j 70] seems to
have been the first to propose this test and his derivation of the test is of some
interest. Recall the product test, equation (8) above. Suppose the quantity
index Q satisfies the quantity analogue to the price test PT5; i.e., suppose
Q satisfies Q(pO, pI, yO, Ayl) = AQ(pO, pI, yO, VI). Then using (8), we see that
P(pO, pI, yO, yl) must satisfy PT7.

Vogt [1980; 70] used the same type of argument to derive PT4 as a conse­
quence of the quantity index satisfying an analogue to the identity test PT3;
i.e., suppose Q satisfies Q(pO,pl,y,V) = 1. Then by (8), p(pO,pl,y,y) =
pI. y/pO. yQ(pO,pl,y,y) =pl. y/pO. y which is PT4.9 Thus if a quantity in­
dex Q satisfies a certain test or property, then (8) may be used to deduce the
corresponding property or test that the price index P must satisfy. This obser­
vation was first made by Irving Fisher [1911; 400-406] in an almost forgotten
(but nonetheless brilliant) work.

PT8: Invariance to Proportional Changes in Base Quantities (Homogene­
ity of Degree Zero in Base Quantities): p(pO,pl, AYo, y1) =P(pO ,pI, yO, VI) for
all A > 0; i.e., if all base period quantities are multiplied by the number A, then
the price index remains unchanged.

Surprisingly, this test does not seem to have been proposed before.
If the quantity index Q satisfies the following counterpart to PT6: Q(pO, pI,

AyO, VI) =A-I Q(pO, pI, VO,yl) for all A > 0, then using (8), the corresponding
price index P must satisfy: P(pO, pI, AVO, VI) = pI . VI/pO . ..\VOQ(pO, pI, ..\VO, VI)
= pI . VI/pO. AVOA-IQ(pO,pl,yO,V1) = p(pO,pI,VO,VI); i.e., P must satisfy

9This derivation may be found in Irving Fisher [1911; 401] if we set his Jel =1.
The «lmplete derivation of .Fisher's Test 2 proceeded as follows. Suppose the
quantity index satisfies the following Proportionality Test: Q(pO, pI, V, k1y) =
Jel. Then P must satisfy: p(pO,pl,y,Jely) =pl. Jely/pO. vQ(pO,pl,V,Jely) =
pI ./ely/pO . y/e l =pI . y/pO .y. Thus if Q satisfies Fisher's Proportionality Test,
then the corresponding P must satisfy p(pO,pl,y,>.y) = pI . y/po. y for all
>. > 0, which is a stronger version of the Basket Test, PT4. Fisher [1911; 406]
thought that this price test was the most important of his eight tests for prices
because it was the only test that indicated what type of quantity weighting of
the prices was required. However, later Fisher [1922; 420-421] no longer seemed
to consider that the test was important. Note that we can now interpret PT4
as an implicit identity test.
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llSee the critical discussion by Sato [1980].
12Funke and Voeller [1979; 55] proposed the following (different) price reversal
test: p(pO,pl,yO,yl)P(p1,pO,yO,yl) = 1. Sato [1980; 127] showed that this
price reversal test along with the time reversal test PT11 implied the quantity
reversal test PTI2.

i.e., the price index lies between the minimum price ratio and the maximum
price ratio. This very desirable property seems to have been first proposed by
Eichhorn and Voeller [1976; 10].

PTI5: Mean Value Test for Quantities:

. . { 1I °.. - 1 M} < 1 1I ° °P( ° 1 ° 1)mm, y; y; . I - , ... , _ P . Y P . Y P. P ,y ,y

~ max;{y; Iy? : i = 1, ...• M}.

i.e., if the price vectors for the two periods are interchanged, then the quantity
index remains invariant. Thus if prices for the same good in the two periods
are used to weight quantities in the construction of the quantity index, then
property PT13 implies that these prices enter the quantity index in a symmetric

manner.
The next three tests are mean value tests.

PTI4: Mean Value Test for Prices:

. { 1I °..- 1 M} < P( ° 1 ° 1)ffi;ln Pi Pi . I - , ... , _ p, p ,y ,Y,
~ m!U{pt/p? : i = 1, ... , M};,

Our next two tests are more controversial, since they do not appear to be
consistent with the economic approach to index number theory.ll

PTI2: Quantity Reversal Test (Quantity Weights Symmetry Test): P(pO, p1,
yO, y1) =P(pO, pl. y1, yO); i.e., if the quantity vectors for the two periods are
interchanged, then the price index remains invariant. This property means that
if quantities y:r, are used to weight the prices in the index number formula, then
y~ and y~ must enter the formula in a symmetric manner; i.e., quantities from
each period enter the formula symmetrically.

Funke and Voeller [1978; 3] introduced this test; they called it the "weight
property" .

PTI3: Price Reversal Test (Price Weights Symmetry Test): pl . yl/pO .
yOp(pO,p1,yO,yl) = pO. yl/pl . yOp(pl,pO.yO,y1). This test has not been
proposed beforel2 but it is the analogue to PT12 applied to quantity indexes;
i.e., if we use (8) to define the quantity index Q in terms of the price index P,
then it can be seen that PT13 is equivalent to the following property for the
associated quantity index Q:

Q(pO,pl,yO,yl) = Q(pl,pO,yO,y1);(9)

PT11: Time Reversal Test: p(pl, pO, y1. yO) = IIP(pO, p1, yO, y1); i.e., if
the data for periods 0 and 1 are interchanged, then the resulting price index
should equal the reciprocal of the original price index. Obviously, in the one
good case when the price index is simply the single price ratio, this test is
satisfied (as are all of the otMr tests listed in this section).

When the number of goods is greater than one, many commonly used
price indexes fail this test; e.g., the Laspeyres [1871] price index, PL == pl . yO I
pO . yO, and the Paasche [1874] price index, Pp == p1 . y11pO. yl, both fail this
fundamental test.

The concept of the test was due to Pierson [1896; 128], who was so upset
with the fact that many of the commonly used index number formulae did not
satisfy this test that he proposed that the entire concept of an index number
should be abandoned. More formal statements of the test were made by Walsh
[1901; 368] [1921; 541] and Fisher [1911; 534] [1922; 64].

lOFisher [1922; 63] comments on this test that: "This is so simple as never to
have been formulated."

PT8. This argument provides some justification for assuming the validity of
PT8.

PT7 and PT8 together impose the property that the price index P does
not depend on the absolute magnitudes of the quantity vectors yO and yl.
Of course, in the one good case, PT4 and either PT7 or PT8 implies that
jJ(p~,pLy~, yD =pUp~, the price ratio for the single good.

PT9: Commodity Reversal Test (Invariance to Changes in the Ordering of
Commodities): P(pO,pl,yO,y l ) = p(pO,pl,yO,yl) where pt denotes a permu­
tation of the components of the vector pI and yl denotes the same permutation
of the components of yl for t = 0.1. Thus if the ordering of the commodities
is changed, the numerical value of the price index remains unchanged.

This test is due to Irving Fisher [1922]1° and it is one of his three famous
reversal tests. The other two are the time reversal test and the factor reversal
test which will be considered below.

PTI0: Invariance to Changes in the Units of Measurement (Commen-
b 'l't 'T' t) P( ° ° 1 1 -1 ° -1 °sura lly ies: a 1Pl, ... ,aMPM; a1P1, .. ·,aMPM; a 1 Yl, ... ,aMYM;

-1 1 -1 1 ) _ P( ° 0. 1 1. ° 0. 1 1 ) ra l Yl, .. ·,aMYM - Pl,· .. ,PM' Pl'· ... PM' Yl'''''YM' yl ... ·'yM lor
all a1 > 0, ... , aM > 0; i.e., the price index does not change if the units of
measurement for each commodity are changed.

The concept of this test was due to Jevons [1884; 23] and the Dutch
economist Pierson [1896; 131], who criticized several index number formula for
not satisfying this fundamental test. Fisher [1911; 411] first called this test the
change of units test and later Fisher [1922; 420] called it the commensurability
test.
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Using (8) to define the quantity index Q in terms of the price index P, we
see that PT15 is equivalent to the following property on the associated quantity
index:

3. The Test Approach and Fisher Ideal Index Numbers

using PT11, the time reversal test.

= P(pO, pi, yO, yl )P(pO, pi, yO, yl)

using PT12, the quantity reversal test,

(15)
pi . yl pi . yO I pO . yO pO . yl = P(po, pi , yO, yl)/ p(pl , pO, yO, yl)

= P(pO, pi, yO, yl)/p(pl ,po, yl, yO)

Recall the twenty tests listed in the previous section. Our main result is The­

orem 1.
THEOREM 1. The only index number formula P(pO, pi, yO, yl) which satisfies
tests PTl - PT20 is the Fisher ideal price index PF defined below by (16).

Proof: Using the price reversal test, PT13, as well as the positivity test,
PT1, we may rearrange terms to obtain the following equality:

increase, so that P(pO, pi, yO, yl) is increasing in the components of pl. This
property was proposed by Eichhorn and Voeller [1976; 23].

PTI8: Monotonicity in Base Prices: P(pO, pI, yO, VI) > pep, pI, VO, VI) if
pO < p; i.e., if any period 0 price increases, then the price index must decrease,
so that P(pO, pI , yO, yl) is decreasing in the components of pO. This property
was also proposed by Eichhorn and Voeller [1976; 23].

PT19: Monotonicity in Current Quantities: pi 'Vl Ipo .yO P(pO, pi, yO, yl) <
pi . Ylpo . yO P(pO, pi, yO, y) if yl < y.

PT20: Monotonicity in Base Quantities: pl.yl/pO .yOP(pO,pl,yO,yl) >
pi . yllpO . yP(pO, pi, y, yl) if yO < y.

If we define the implicit quantity index Q that corresponds to P using (8),
we find that PT19 translates into the following inequality involving Q:

(13) Q(pO,pl,yO,yl) < Q(pO,pl,yO,y) if yl < Yi

i.e., if any period 1 quantity increases, then the quantity index must increase.
Similarly, we find that PT20 translates into:

(14) Q(po,pl,l,yl) > Q(pO,pl,y,yl) if yO < y;

i.e., if any period 0 quantity increases, then the quantity index must decrease.
Tests PT19 and PT20 are due to Vogt [1980; 70].
This concludes our listing of tests. In the next section, we ask whether any

index number formula P(pO, pi, yO, yl) exists that can satisfy all twenty tests.

pI , yO Il . yO S P(pO, pI, yO , yl) S pI . yl I pO . yl ;

pI . yl IpO. yl S p(pO,pl ,yO, yl) S pI . yO/po. yO;

(11)

(12)

i,e., the price index P must lie between the Laspeyres and Paasche price in­
dexes.

A justification for this test can be made by considering the basket test
PT4. If yO = yl, then by PT4, the correct functional form for the price index
is pl. yO Ipo . yO =pI . yl Ipo. yi. In the general case where yO =I yl, it is natural
to think of both yO and yl as being "extreme" baskets and so the Laspeyres
and Paasche price indexes should provide bounds to the "best" price index
P(pO, pI, yO, yl) which treats the quantity data in each period in a symmetric
manner instead of the extreme manner implied by the Paasche and Laspeyres
price indexes, which each use the quantity data for only one period.

In the context of the axiomatic or test approach to index number theory,
PT16 has been proposed by both Bowley [1901; 227] and Fisher [1922; 403].13

We could propose a test where the implicit quantity index Q that cor­
responds to P via (8) is to lie between the Laspeyres and Paasche quantity
indexes, QL and Qp, defined by (2) and (3) above. However, the resulting test
turns out to be equivalent to (11) and (12).14

Our final four tests are monotonicity tests.

PT17: Monotonicity in Current Prices: P(pO,pl,yO,yI) < P(pO,p,yO,yl)
if pI < p; i.e., if some period 1 price increases, then the price index must

130f course, the Paasche and Laspeyres price indexes arise repeatedly as bounds
to the true index in the economic theory of index numbers; e.g., see Fisher and
Shell [1972b; 57-58], Hicks [1940] or Diewert [1983b].
14Thus PT16 can be given a quantity index justification.

(10)
mindyIly? : i = 1, ... , M} S Q(po, pI ,yO, yl)

S maxdylly? : i = I, ... ,M};

i.e., the implicit quantity index Q defined by P lies between the minimum and
maximum rates of growth of the individual quantities.

This test does not seem to have been proposed before, but it is an obvious
quantity analogue to the price test PT14.

PT16: Paasche and Laspeyres Bounding Test: The price index P satisfies
at least one of the following inequalities (11) or (12):



:528 Essays in Index Number Theory 13. Fisher Ideal Indexes 329

where sl == p1vt/p' .V'is the expenditure share of good i in period t as usual.
Straightforward computations show that the Paasche and Laspeyres price

indexes, Pp and PL, fail only the three reversal tests, PTll, PT12 and PTI3.

where Pp , PL and ]51' are the Paasche, Laspeyres and implicit translog price
indexes respectively. Two additional price indexes that are often used in pro­
ductivity studies are PT, the direct translog price index, and Pw , the Walsh
[1901; 373] price index,17 defined as follows:

(20) PT(pO,pl,yO,yl) == rr:l(pt!p?t?+I»/2,

M M
(21) Pw(pO, pi, yO, yl) == L;=l pt(y;y?)1/2 / Lj=l pJ(yJyJ)1/2,

certain regularity conditions, that functions P and Q satisfying the modified
product tests do not exist. Frisch [1930; 398] calls functions P and Q that
satisfy the usual product test (8) relative index numbers. Finally, Samuelson
and Swamy [1974; 575] criticize PT21 from the perspective of the economic
theory of index numbers and conclude: "A man and wife should be properly
matched; but that does not mean I should marry my identical twin!"
l6For another axiomatic characterization of the Fisher ideal price index (and a
history of the subject), see Balk [1985].
17Walsh [1901; 373] called his price index "Scrope's emended method."

THEOREM 2. (Funke and Voeller): The only index number function P(pO, pi,
yO, yl) which satisfies PT1 (positivity), PT11 (time reversal test), PT12 (quan­
tity reversal test) and PT21 (factor reversal test) is the Fisher ideal index PF
defined by (16).

Our proof of Theorem 1 is very similar to Funke and Voeller's proof of
Theorem 2.16

The Fisher price index PF satisfies all 20 of the tests listed in the previous
section. Which tests do other commonly used price indexes satisfy? Recall QL,
Qp and QT defined by (2), (3) and (5) above. The corresponding price indexes
defined using (8) are:

1 rrM (1°+1')/2-
pl.y /l.yOQT =pl.yl/pO .yO i=l (yI/y?) • ; ==PT,

pl. yl/pO. yOQp = pi . yO /pO . yO == Pr(pO, pi , yO, yl), and

pi .yl/pO .yOQL =pl.yl/pO .yl == Pp(pO,pl,yO,yl),

(19)

(18)

(17)

The desired result now follows by taking the positive square root of both sides
of (15); i.e., we obtain:

(16) P(pO ,pi, yO, yl) = [(pl. yO /pO . yO)(pl . yl/pO . yl)p/2 = (PLPp )1/2 == PF

where PL == pi . yO /po . yO is the Laspeyres price index and Pp == pi . yl/pO . Vi
is the Paasche price index.

Note that we established (16) using only PT1 and the three reversal tests
PTll, PT12 and PT13.

It can be verified by direct computations that PF satisfies the remaining
16 tests. Q.E.D.

Of course, the quantity index that corresponds to the Fisher price index
using the product test (8) is QF, the Fisher quantity index, defined by (4).

It turns out that PF satisfies yet another test, PT21, which was Irving
Fisher's [1921; 534] [1922; 72-81] third reversal test (the other two being PT9
and PTll):

PT21: Factor Reversal Test (Functional Form Symmetry Test): P(pO, pi,
yO,yl)p(yO,yl, pO,pl) = pi . yl/pO. yo. A justification for this test is the
following one: if P(pO, pi, yO, yl) is a good functional form for the price index,
then if we reverse the roles of prices and quantities, P(yO, yl, pO, pi) ought to
be a good functional form for a quantity index (which seems to be a correct
argument) and thus the product of the price index P(pO ,pi, yO, yl) and the
quantity index P(VO, Vi, pO, pi) ought to equal the value ratio, pi . yl/pO . yO.
The second part of this argument does not seem to be valid and thus many
researchers over the years have objected to the factor reversal test. 15 However,
if one is willing to embrace PT21 as a basic test, Funke and Voeller [1978; 180]
obtained the following result:

15Bowley [1923; 93] objected to PT21 on statistical grounds: "For (2), there
seems to be no justification on general principles; the mean of a product only
equals the product of the means of its factors if there is no correlation between
them." The next objector to PT21 was Davies [1924; 187]: "That price and
quantity each requires a distinct type of formula is indicated by the simpler
problem where only one commodity is involved, as in the case of the bushels
of wheat previously discussed. In this case, the measure of quantities for each
period is obviously obtained merely by summing up the number of units sold,
while the measure of prices is obtained by dividing the aggregate value by
the quantity units. It would therefore be expected that the composite indexes
derived by an analogous method would be associated with distinctive formulae
for prices and quantities. Hence the factor reversal test may be disregarded."
Note that Davies attacked PT21 from the perspective of what Frisch [1930;
397] called the theory of absolute index numbers which looks for functions P
and Q which satisfy the following modified product tests: P(pO)Q(yO) = pO . yO
or P(pO, yO)Q(pO, yO) = pO. yo. Eichhorn [1978b; 141-146] calls these absolute
index numbers, P and Q, price levels and quantity levels, and he finds, under
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Given a positive vector of output prices p == (PI,'" ,PM) ~ OM, define
the firm's revenue function I9 as follows:

i.e., the firm maximizes revenue p. y == L:~=I PmYm subject to its production
function constraint and the resulting maximized revenue is set equal to rep, x).

It is obvious that I completely determines r. Diewert [1973a] shows that
under certain regularity conditions on I, r also completely determines I· It
can also be shown that rep, x) will always be linearly homogeneous in the com­
ponents of p for fixed x. If the production function I is linearly homogeneous,
so that the technology is subject to constant returns to scale, then it can be
shown20 that rep, x) is linearly homogenous in the components of x for fixed p.

In what follows, we shall assume a constant returns to scale technology.
However, this is not restrictive: if we want to model the nonconstant returns to
scale case, we need only add an artificial fixed factor whose quantity is always
set equal to 1; i.e., add XN+I == 1 to the other N inputs.21

In order for a functional form for a revenue function, rep, x), to be flexible
at the point p' ,x', the functional form must have enough free parameters so
that it can approximate an arbitrary twice continuously differentiable revenue
function r' to the second order of p', x'; i.e., we require that r have enough
free parameters so that the following equations can be satisfied:

Since the quantity and price reversal tests, PT12 and PT13, are somewhat
controversial, the test performance of PL and Pp seems quite good. However,
the failure of the time reversal test, PTll, seems to be a fatal flaw associated
with the use of these indexes.

The Walsh price index, Pw, fails only four tests: PT13, the price reversal
test; PT16, the Paasche and Laspeyrcs bounding test; PT19, the monotonicity
in current quantities test; and PT20, the monotonicity in base quantities test.

Finally, the translog price index Fr and the implicit translog price index
PT each fail nine tests. Both indexes fail PT12, PT13, PT16 and the mono­
tonicity tests PT17 to PT20. In addition, Fr fails PT4 (the basket test) and
PT15 (the mean value test for quantities), while Pr fails PT3 (the identity
test) and PT14 (the mean value test for prices). Thus the translog indexes are
subject to a rather high failure rate.

As we mentioned at the beginning of Section 2, our 20 tests on the price
index function P(pO, pI, yO, yl) are really 20 tests on P and the corresponding
implicit quantity index Q(pO, pI, yO, yl) which can be defined in terms of P
using the product test (8).

The conclusion we draw from the results of this section is that from the
viewpoint of the test approach to index numbers, the Fisher quantity index QF

appears to be far superior to the translog quantity index QT. Hence from the
viewpoint of the test approach, the Fisher productivity index PrF defined by
(6) appears to be superior to the translog productivity index PrT defined by
(7).

In the following sections of this paper, we will also provide economic jus­
tifications for the use of the Fisher productivity index Pr·p. In the following
section, we start our discussion of the economic approach to index number
theory by proving a flexibility theorem for a certain functional form. This
functional form will play an important role in subsequent sections. However,
the reader who is interested in productivity indexes can skip to Section 5.

4. ANew Flexible Functional Form for a Revenue Function

(22)

(23)

(24)

(25)

(26)

(27)

(28)

rep, x) == max{p· y: YI = f(Y2,"" YM, x)};
11

( ..) .( ..)rp,x =r p,X ;

'7 ( •.,) '7 .( •• ).vpr p ,x = Ypr p ,x ,

'V",r(p',x') = 'V",r'(p',x');

n2 (. .) '72 .(. .)
Y pp r p ,x = Y pp r p, x ;

'72 (. .) '72 .(. .).
Y "'''' r p ,x = v 1:1: r p, x ,

'72 (. .) '72 .(. .).
Y p'" r p ,x = Y pI: r p, x ,

Let Y == (YI, ... ,YM) be a nonnegative output vector and let x == (Xl, ... ,XN)
be a nonnegative input vector. Then the technology of a firm that produces
these M outputs and uses these N inputs can be represented by a production
or transformation function I; i.e., YI = I(Y2,'''' YM, x) represents the maxi­
muml8 amount of output 1 that can be produced using the vector of inputs x
given that amounts Y2, ... ,YM of outputs 2, ... ,M must be produced.

I8This maximum is conditional on current managerial knowledge and practices.
If the output targets Y2, . .. ,YM are too high relative to the available amount
of inputs x == (Xl, ... , XN), then I(Y2, ... , YM ,x) == -00.

where 'Vpr == (ar/opl, ... ,or/oPM) and 'V",r == (or/oxI, ... ,or/oxN) are
vectors of first order partial derivatives of r with respect to the components of

I9The concept is due to Samuelson [1953-54; 20]. Gorman [1968b] uses the
term "gross profit function" while McFadden [1978a] uses the term "conditional
profit function" and Diewert [1973a] [1974a] uses the term "variable profit
function."
20See Diewert [1973a; 291-294].
2IThe "price" of this input will be WN+I, the pure profits (or losses) of the
firm.
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there exist symmetric matrices A and C and a matrix B such that

THEOREM 3. Let r· be the revenue function that corresponds to a constant
returns to scale technology. Suppose r· is twice continuously differentiable at
p.:> OM, x·:> ON with r·(p·,x·) > O. Then for every a and f3 such that

p and x respectively and V 2
p r, V;zr and V~zr are matrices of second order

partial derivatives of r with respect to the components of p and x. Taking
into account the symmetry of the matrices V~pr and V;zr, it appears that r
would require at least 1 + M + N + (1/2)(M + I)M + (1/2)(N + I)N + M N
parameters. However, this computation neglects the assumption that rand r·
are assumed to be linearly homogeneous in p and x separately.

If r(p, x) is linearly homogeneous in p, then using Euler's theorem on
homogeneous functions it can be shown that22 r must satisfy the following
1+ M + N restrictions: 23

(36)

(37)

aT p. i= 0, f3T x· i= 0,

.TB OT B· - 0p = N' x - M

and r defined by (35) approximates r· to the second order at (p. ,x·). Moreover,
the matrix A can be chosen to satisfy the following normalization:

(29)

(30)

(31 )

r(p·,x·) = p.TVpr(p·,x·);

V;pr(p·,x·)p· = OM;

p.TV~zr(p·, x·) = V; r(p·, x·).
(38) p.T Ap· = r·(p· ,x·) > O.

Similarly, if r(p, x) is linearly homogeneous in x, then it can be shown that
r must satisfy the following 1 + N + M restrictions:

Proof: We need to choose A, Band C so that equations (23)-(28) are
satisfied. Note that r(p, x) defined by (35) is linearly homogeneous in p for
fixed x and linearly homogeneous in x for fixed p, as is r· (p, x). Thus both r
and r· satisfy the restrictions (29)-(34).

Define the vectors y' and w· as follows:
(32)

(33)

(34)

( ..) .T'r7 (. .)rp,x =x v"rp,x ;

V;"r(p·,x·) =ON;

'r7 2 (. .). 'r7 (. ..)v px r p , x x = v p r p ,x . (39) ,_'r7 .( •• )y = vpr p ,x ;
• _ 'r7 .(. .)w=v"rp,x.

However, not all of the restrictions (29) to (34) are independent: if we post­
multiply both sides of (31) by x·, premultiply both sides of (34) by p.T and
use (29) and (32), we find that the last equation in (34) is implied by the other
equations. Hence there are 2M + 2N + 1 independent restrictions on the first
and second partial derivations of r in (29)-(34). Note that r· must also satisfy
the restrictions (29)-(34).

Taking into account the restrictions (29)-(34), we see that in order for 7' to
be flexible, it must have at least 1+ M + N +(1/2)(M + I)M +(1/2)(N + I)N +
M N - (2M +2N + I) = (1/2)M(M + I) + (1/2)N(N + 1)+ (M -I)(N -1)-1
independent parameters.

Consider the following functional form for r:

Using (29) and (32) applied to r·, we have

(41) A == V;pr·(p·, x·) + (p.T y.)-l y• y.T j

(42) C == V;zr·(p·,x·) + (w· T
X·)-l X• x ·T j

(43) B == 2(aT p.,I3T x· )-1 [p.T y'V;zr' (p. ,x·) - y·w·T ].

r'(p' ,x·) = p.T y' =w·T x·.

Using properties (30) and (33) applied to r·, we have:

Now define A, Band C as follows:

(40)

r(p, x) == (pT ApxTOx + aT pf3T xpT Bx)1/2, A =AT, 0 =OT(35)

Equations (40) and (44) may be used to show that A satisfies (38),
Now use (31) and (34) applied to r·, (36), (39) and (40) to show that B

defined by (43) satisfies the restrictions (37).

where A, Band 0 are parameter matrices and a and (3 are parameter vectors.
The following theorem shows that r is a flexible functional form.

22See Diewert [1973a; 308] or Diewert [1974a; 143-145].
23Notation: p. and VpII are defined as column vectors and p.TVpII denotes
their inner product so p.T is the transpose of p.; OM denotes a vector of zeros
of dimension M.

(44)

(45)

Ap· = y. and

Ox· =w·.
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Premultiply both sides of (45) by x·T and use (40) to show: 5. An Economic Approach to Productivity Indexes

(46) x·TCx·=r·(p.,x.).

Now use (35), (37), (38) and (46) to show that (23) is satisfied.
Differentiate I' with respect to p and obtain:

V'pr(p·,x·) = [r(p·,x·)t 1Ap·x·T Cx· using (37)

= [I'. (p., x·)] -1 Ap· x·TCx· using (23)

Assume that we can observe a firm's vector of outputs y', inputs x', output
prices p' and input prices w' for periods t =°and t =1. The firm's production
function in period t is I' and the corresponding dual revenue function is 1"

defined by (22) (with 1" and f' replacing I' and J) for t = 0,1.
In the economic approach to productivity measurement, a change in pro­

ductivity is taken to be a shift in the production function or in one of the dual
representations of the production function such as the revenue function. 24

In this section, we shall identify a productivity change with a shift in the
firm's revenue function. More specifically, consider the following two economic
productivity change indexes, Pro and Pr 1, defined as follows: 25

'\7rr(p·,x·) = [r(p·,x·)t1p.T Ap·Cx· using (37)

Thus equations (24) are satisfied. Similarly, differentiate r with respect to x
and obtain

and thus equations (25) are also satisfied.

Finally, it can be shown that equations (41 )-(43) imply equations (26)-
(28). Q.E.D.

Thus for essentially arbitrary Q and [3 vectors, the r defined by (35) is a
flexible functional form. Note that given Q and [3, we have used a minimal
number of parameters in the A, Band C matrices to achieve the flexibility
result; i.e., taking into account the restriction (38), there are (1/2)M(M +
1) - 1 independent aij parameters, (1/2)N(N + 1) independent Cij parameters
and, taking into account the restrictions (37), (M - I)(N - 1) independent b

ij
parameters. We shall use generalizations of this functional form in the next
section.

If,.' is differentiable at p', x t , then by a result due to HoteHing [1932; 594], we
have

t = 0, 1.

t =0,1.

t = 0,1.

max",{r'(pt,x)-wt ·x}.

yl =V'prt(p',xt),

pt . y' =1.t(pt, xt),

Pr' == r1(pl,xl)/rO(pl,x' ),

(50)

(49)

(48)

(47)

Thus Pr' is a measure of the outward shift in the technology going from period 0
to period 1, using the period t output price vector p' and the period t input
quantity vector x' as reference vectors.

If there has been an efficiency improvement due to a process innovation or
improved managerial practices, then Pro and Pr1 will be greater than 1.

We shall assume competitive profit maximizing behavior on the part of the
firm in each period. This implies both revenue maximizing and cost minimizing
behavior. Thus we have observed period t revenue, p' . yl, equal to maximized
revenues; i.e., we have

Furthermore, under the assumption of competitive profit maximizing behavior,
for t = 0, I, the period t observed input vector x' must be a solution to the
profit maximization problem:

24This shift in the production function approach dates back to Tinbergen [1942]
and Solow [1957]. Jorgenson and Griliches [1967; 253] seem to have been the
first to note that productivity change could also be defined in terms of shifts
in the dual profit function.
25This type of theoretical productivity index was defined by Diewert [1983b;
1063].

using (46)

using (44)

using (39).

using (23) and (38)

using (45)

using (39)

= Ap·

= y.

= V'pr·(p·, x·)

=w·

=C'x·

= '\7",r·(p·, x·)
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Assuming that xl ~ ON, the first order necessary conditions for (50) are: Using (59) and (56), we have

(51 ) I n I( I I)W = v:z;r p ,x , t = 0,1. (60) WI . Xl = rl(pl, xl), t = 0,1.

The square of the Fisher output index is:

[OF(l,pl, yO, ylW = (po. yl/pO . yO)/(pl . yO/pi. yl)

= [O'~pOTApi x lTCx l /r l (pi, xl )po . yO]/[O'~pITApOxOT Cxo /rO(pO, XO)pl . yl]

using (58)

The square of the Fisher input index is:

[OF(wO, Wi, xO, Xl )]2 =(wo . Xl /wo . xo)/(Wi . xO /w l . Xl)

= [O'5XlT CxOpOT Apo /ro(po, xO)wo . x0]f[O'rxOT Cx l piT Api /rl (pl, Xl )wl . xl]

using (59)

= [O'5pOTApo/rO(pO,xO)2]/[O'rpIT Ap l/rl (pl,x l )2]

using C = CT and (60)

=(O'~pOTAl /O'~pOTApOxOT CxO)/(O'rpIT Apl /O'rpiT AplX IT Cx
l
)

We shall assume that the firm's period t revenue function r l has the fol­
lowing functional form which generalizes (35):

(52) r l (p, x) == O'I(pT ApxT Cx + 0'1 . pfJI . xpT Blx )1/2,

A =AT, C =CT , t =0, I,

where 0'1 is a positive number, A, BI and C are parameter matrices and 0'1

and fJl are parameter vectors. Note that the symmetric parameter matrices A
and C are constant over the two periods but the other parameters are allowed
to vary.

THEOREM 4. Suppose that the parameters of the revenue functions rO and r l

defined by (52) satisfy restrictions (53) or (54):

(53) pOT nO =oJ:,; BOxo =OM; 0'0. pi =0 and fJo. xl =0 or

(54) piT B I = OJ:,; Blx l = OM; 0'1. pO = 0 and fJI . xO = o.

Suppose further that the observed period t input vector Xl is strictly positive for
t = 0, 1. Then assuming competitive profit maximizing behavior for periods 0
and 1, the theoretical productivity indexes Pro and Prl defined above by (47)
are both equal to the Fisher productivity index PrF defined by (6); i.e., we
have

(61)
= (O'~XITCxl)/(C7~XOTCxO) using A = AT and (48).

(55) P Op (0 I ° I ° I 0 I) P I /r = rF P ,p ,y ,y ,w ,w ,x ,x = r = 0'1 0'0.
using (56)

Proof: Under assumptions (53) or (54), it can be verified that

(56) rl(pl,xl ) =O'I(pIT ApI XITCXI )I/2, t =0,1.

(62)
=XITCxl/XOTCxO.

Take the ratio of (61) to (62), take the positive square root and we obtain:

Hence using definitions (47), we have (63) P ( 0 I ° I ° I ° I) _ /rF P ,p ,y ,y ,w ,w ,x ,x - 0'1 0'0·

From (49), we have for t =0,1:

differentiating definitions (52) and using (53) or (54). Similarly, from (51) we
have for t = 0, 1:

(57)

(58)

(59)

PrO = PI·I = 0'1/0'0,

yl = \lprl(pl,xl ) =O'~Aplxl1'Cxl/rl(pl,xl),

WI = \l:z;rl(pl, Xl) = O'~CxlplTApI /rl(pl, Xl)'.

The equalities (57) and (63) imply (55). Q.E.D.
The restrictions (53) are consistent with rO(p, x) being fl.exible at pO, XO

while the restrictions (54) are consistent with rl(p, x) being flexible at (pl, Xl).
Thus since the Fisher productivity index PrF is exact for the theoretical pro­
ductivity indexes Pro and Pr l , PrF is a superlative measure of productivity

change.26

26This terminology is analogous to Diewert's [1976a; 117] definition of a su­
perlative index number formula.
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Thus Theorem 4 provides a strong economic justification for the use of the
Fisher productivity index.27 However, the revenue functions r l in the theorem
correspond to constant returns to scale technologies. Thus if we want to apply
the theorem to a diminishing returns to scale technology, it is necessary to
add an artificial fixed input and set it equal to one (i.e., x:""+l :: 1). The
corresponding period t price, w~+1J must be set equal to the firm's period t
pure profits.

In the remainder of this paper, we follow the example of Caves, Chris­
tensen and Diewert [1982bJ and use the distance function approach for defining
theoretical input, output and productivity indexes. The reader who is mainly
interested in productivity indexes can skip ahead to Section 8.

As in Section 4, let f denote a firm's production function, let x :: (Xl, ... ,
XN) denote a positive input vector and let Y:: (Yl, ... ,YM) denote a nonnega,­
tive output vector. In order to define our theoretical indexes of real input, it is
first necessary to define the firm's input distance (or deflation) function D as
follows: 29

(66) D(y,x):: max6>0{O: Yl::; f(Y2, ... ,YM,xt!6,;r;2/6, ... ,;r;NI6)}.

Thus D(y, x) is the maximal deflation factor c* which will just put the output
vector Y and the deflated input vector ;r;lc* onto the boundary of the feasible
production set.

It is easy to verify that D(y, x) defined by (66) will be linearly homogeneous
in the components of Xi i.e., for a scalar ..\ > 0, we have

Hence if D is twice continuously differentiable with respect to the components
of;z;, Euler's theorem on homogeneous functions may be used to establish the
following identities:

If the production function f is linearly homogeneous, so that there are
constant returns to scale, then it can be shown that D(y,;r;) defined by (66) is
homogeneous of degree minus one in the components of y; i.e., for>' > 0, we
have:

6. An Economic Approach to Indexes of Real Input

As usual, let WI :: (wI. ... ,w~) be the input price vector for a firm in period t
and let ;r;t :: (xt, ... ,x~) be the corresponding positive input quantity vector
for t =0, 1.2li

In order to aggregate ;r;o and xl, Caves, Christensen and Diewert [1982b;
1395-1399J developed the concept of the Malmquist [1953] input index, which
was first defined geometrically in the two input case by Moorsteen [1961; 460]
and was perhaps verbally stated by Hicks [1961; footnote 4] [1981; 256]. Caves,
Christensen and Diewert [1982b; 1398] found that an average of two theoreti­
cal Malmquist input indexes could be approximated rather well under certain
conditions by a translog or Tornqvist index of inputs Qr defined as:

(67)

(68)

(69)

(70)

D(y,..\x) = ..\D(y,;r;).

D(y,x) =;z;TV,..D(y,x);

'V';,..D(y, ;r;)x =ONi

'V'~rD(Y, ;r;);r; = 'V'yD(y, x).

(64)
N

QHwO,w1,xO,X1):: II. (x 1jxO)(l/2)(3?+3»
I;; 1 1 1 (71) D(..\y,x) == >.-lD(lI,x).

Hence if D is twice continuously differentiable, Euler's theorem on homogeneous
functions may be used to establish the following identities:

29Some minimal regularity conditions on f will be required to ensure that
the maximum in (66) exists. For the one output case (M = 1), appropriate
regularity conditions and duality theorems may be found in Blackorby, Primont
and Russell [1978; 25-26] and in Diewert [1982; 559-561].

where s: :: p:x:!pt . Xl is the period t cost share for input i.
Our purpose in this section is to provide an analogous justification for the

Fisher input index QFdefined by:

(65) QF(wO,wl,XO,xl)::(pl.xlpO·XljpO·XlpO'XO)1/2.

27Diewert [1976a; 126-130] provided an economic justification for the use of
PrF under rather strong separability assumptions; i.e., the period 0 transfor­
mation function had the form g(lI) = f(x) while the period 1 transformation
function had the form g(y) =(1 +r)f(x). See Blackorby, Primont and Russell
[1978J on separability concepts.
2liAlternatively, t could index two different firms in the same industry.

(72)

(73)

(74)

D(y,x) = -yT'V'yD(y,x);

'V'~yD(y,x)y= -2'V'yD(y,x);

yT'V'~rD(y,x) = -V;D(y, x).
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there exist synunetric matrices A and C such that

and a matrix B such that

In the remainder of this section, we shall assume that production functions
are linearly homogeneous so that constant returns to scale prevail.3o

We first want to find a functional form for D(y, x) which is flexible at
y. ,x·; i.e., given an arbitrary twice continuously differentiable input distance
function D· (y, x) which is homogeneous of degree one in x and homogeneous
of degree minus one in y, we want to find a functional form for D such that
the following equalities hold:

(83)

(84)

y.T Ay· = 1,

y*-lT B = Or.,

x·TCx* = 1

Ex· = OM

(75)

(76)

(77)

(78)

(79)

(80)

D(y·,x·) =D·(y·,x·) =1;

VIID(y·,x·) =VIID·(y·,x·);

V :;D(y·, x·) = V :;D·(y·, x·);

\7~yD(y·, x·) = V~yD·(y·, x·);

\7;:;D(y·,x·) = \7;:;D·(y·,x·);

V~:;D(y·,x·)= \7~:;D·(y·,x·).

and D defined by (81) is flexible at y. ,x·.

Proof: Define A, Band C in terms of the derivatives of D* as follows:

(85) A == - \7~lID· (y., x*) + 3\71/ D*(y·, z*)\7; D* (y., z·);

(86) C == \7;:;D·(y*, z*) + \7:;D·(y·, z*)\7; D·(y*, z*);

B == (0:' y.-Ir l ({3. z·)-ly.2{-\7~:;D·(Y*, z·)

(87) + VIID·(y·, x·)\7; D·(y·, x*)}

We have set D* (y* , x·) = 1, which means that (y*, x*) is on the production
surface. The equalities (76)-(80) mean that D is to have the same first and
second order partial derivatives as D· at the point (y., x·).

For a positive output vector y == (YI, ... , YM), we shall define y-l to be
the vector (yll, ... ,vi)). Now consider the following functional form for D:

where it is a diagonal matrix with the elements of y* on the main diagonal
and y*2 == fi*Y·.

We first show that A, Band C defined by (85)-(87) satisfy the restrictions
(83) and (84). Postmultiply both sides of (85) by y. and use (72) and (73)
applied to D· to obtain the following equation:

(81) D(y,x) == [(yT Ay)-lxTCx + 0:. y-IfJ. x(y-I)T Bx]l/2,

A=AT , C=CT

30However , the results of this section are still valid for the nonconstant returns
to scale case: we need only add an artificial output M + 1 whose quantity is
always equal to one; Le., define YM+l == 1 and redefine the output vector as
Y == (Yl,"" YM, YM+d· Note that the restriction (72) is implied by (68), (70)
and (74).

where A, Band C are parameter matrices and 0: and fJ are parameter vectors.
It is easy to verify that D(y, x) defined by (81) is homogeneous of degree

one in x and homogeneous of degree minus one in y. Thus both D and D.
satisfy the restrictions (68)-(74) at (y., x·).

THEOREM 5. Let y. ~ OM and x· ~ ON. Then for every pair of vectors a
and fJ SUell that

Now premultiply both sides of (88) by y*T, use (72) applied to D· and use
D·(y·, z·) = 1 to obtain the first equality in (83).

Postmultiply both sides of (86) by x·, use (68) and (69) applied to D· and
obtain:

Cx· = V :;D*(y· I x·).

Ay· = -VI/D·(y·, z·).

(89)

(88)

Premultiply both sides of (89) by x*T, use (68) applied to D· and use D* (y* , x·)
= 1 to obtain the second equality in (83).

Premultiply both sides of (87) by y*-lT. Note that y.-lT y.2 = y.T. Now
use (72) and (74) applied to D· and use D·(y·, z·) = 1 to obtain the first set
of equations in (84).

Postmultiply both sides of (87) by x·. Using (68) and (70) applied to D·
and D·(y· I x*) = 1, we obtain the second set of equations in (84).

Using the definition of D, (81), and the restrictions (83) and (84), it can
be verified that D(y·, x*) = 1. Hence (75) holds.

fJ . x· :f 0,.-1 ...J. 00: . Y r,(82)
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(91 )

(90)

Assuming that D' (y' , Zl) is differentiable with respect to the components
of w, Caves, Christensen and Diewert [1982b; 1397] show that the following
equalities hold:

For our next theorem, we will require the hypothesis of cost minimizing
behavior on the part of the firm for periods 0 and 1; i.e., if w' is the observed
input price vector for period t and x', y' are the observed input and output
vectors respectively for period t, then we assume:

t = 0,1.

t = 0,1.

t = 0, 1.w' . x' = C'(y', w'),

w'/w' .Zl = 'V,rD'(y', Zl),

C'(y, w) == min,r{w . x : Yl $ f ' (Y2,"" YM, xn,

(101)

(100)

(99)

Let us interpret QOo. Let 6° = DO(yO, zl). Then using definition (95),
we have yf = fO(yg,".IY'k,xt!6° , ... ,x}..,/6°) and by (96), we have yf =
fO(yg, ... ,y~, x~, ... ,x~). Thus the deflated input vector x l /6° is equivalent
to the period 0 input vector xO from the viewpoint of the period 0 technology
and the deflation factor 6° = DO(yO, xl) = QOO(XO, xl) is a natural measure of
the size of xl relative to xO; if 6° > 1, then Xl is bigger than xO; if 6° = 1, then
xO is equivalent to xl; and if 6° < 1, then Xl is less than zO.

The interpretation for (98) is similar but the comparisons are made us­
ing the period 1 technology. Let 61 = 1/Dl (yl, zO), or Dl (yl, ZO) = 1/61.
Then by definition (95), we have yf = fl(y~, ... ,y1,6lxY, ... ,6lx~) and by
(96), we have yt = Jl (y~, ... ,Ylt, xL ... ,z}..,). Thus 61zO is equivalent to the
period 1 input vector zl from the viewpoint of the period 1 technology and
61 = l/Dl(yl,XO) =QOl(XO,x l ) is another natural measure for the size of Xl
relative to zO.

The firm's period t cost function C' may be defined in terms of the period t
production function f' as follows: for a target output vector Y == (Yl' ... ,YM)
and a given vector of positive input prices w, define

'Vl/D(yO,x·) = -Ayo

= 'Vl/D·(y·,x·) using (88) and

'VxD(y·,x·) =Cx·

='VxD·(y·,x·) using (89).

Thus (76) and (77) are satisfied.
The matrices of second order derivatives of D(y·, x·) are given by equa­

tions (92)-(94) below, using the restrictions (83) and (84):

Now differentiate the D defined by (81) and evaluate the first order partial
derivatives at yO, xO. Using the restrictions (83) and (84), we obtain equations
(90) and (91) below:

(92) \7~l/D(yO, XO) = -A +3(AyO)(AyOf;

(93) \7~xD(y·,x·) = C - (CxO)(Cx·f;

(94) 'V;x D(y·, XO) = -(a· y.-l )(P . x·)yo-2 B - (Ay·)(Cxo)T.

In each period t, we assume that the observed output vector y' and the
observed input vector Zl are on the period t production surface, so that we
have:

Ifwe equate the second order derivatives of D to the corresponding second order
derivatives of D·, then using (76), (77), (90) and (91), it can be seen that the
resulting three matrix equations are equivalent to equations (85)-(87), which
were used to define A, Band C. Thus equations (78)-(80) are also satisfied
and hence D defined by (81) is flexible at yO, xO. Q.E.D.

We now allow the firm's production function to depend on time; i.e., in
period t, the production function is f'. We define an input deflation function
D' for each production function f' as follows: for t = 0,1 ,

(95) D'(y, x) == max6>0{6: Yl $ f'(Y2"" ,YM,xt!6,X2/6, ... ,xN/6)}.

(96) D'(y', x') = I, t = 0, 1.
We now assume that the period t input deflation function D ' has the

following functional form:

Following Caves, Christensen and Diewert [1982b; 1396], we define two
Malmquist theoretical input indexes QOo and Q.l as follows: (102) Dt(y,x) == [(yT A'y)-lZTCX + a ' . y-lpl. zy-lT B txf/2, t =0, 1,

(97)

(98)

QOO(XO, xl) == DO(yO, zl)/DO(yO, XC)

= DO(yO,xl ) using (96);

Q.l(xO,x1) == Dl(yl,x1)/D1(yl,xO)

= IIDl(yl, xO) using (96).

where the matrices A' and C are symmetric.
Note that the D ' defined by (102) are generalizations of the flexible D

defined by (81): in (102), the matrices A' and Bt and the vectors at and pI
are now allowed to depend on time, whereas in (81), these parameter matrices
and vectors were fixed. However, note that the parameter matrix C in (102) is
fixed across the two time periods.
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7. An Economic Approach to Indexes of Real Output

t = 0, 1.

(112) d'(y, x) == min6>0{0 : g'(yt/o, ... ,YM /0, X2,"" XN) ~ xd,

COROLLARY. The above theorem holds if the restrictions (104) and (105) are
replaced by the following restrictions:

(yl)-lT 8 1 = O~j

0'0. (yO)-l = O.

It is straightforward to show that d' (y, x) must be homogeneous of degree one
in the components of y. Moreover, if the period t technology exhibits constant
returns to scale, then g' is homogeneous of degree one in its arguments and it
can be shown that d' (y, x) must be homogeneous of degree minus one in the
components of x. Thus in the constant returns to scale case, the regularity
conditions on the output deflation functions d' are the reverse of the regularity

Our theoretical treatment of output indexes follows that of Caves, Christensen
and Diewert [1982b; 1399-1401]. We now represent the technology in period t
by means of an input requirements function gt where Xl = g'(Yl' ... , YM, X2,

••. ,XN) is the minimum amount of input one required to produce the vector
of outputs y == (Yl,"" YM) given that X n units of input n are available for
n = 2,3, ... ,N.

The period t output deflation or distance function d' is defined as follows:

(110)

(111)

The proof follows by a series of computations similar to (107) through
(109).

We note that the restrictions (104) are consistent with DO being flexible
at (yO, XO) while the restrictions (110) are consistent with D l being flexible at
(yl,X l ).

Note that the above theorem does not require optimizing behavior with
respect to outputs.

Theorem 6 is a Fisher input index counterpart to the translog input in­
dex justification derived by Caves, Christensen and Diewert [1982b; 1398] who
showed that under certain conditions, a geometric mean of Q-o and Q-l was
equal to the translog input index QT defined by (64). Our present result is
perhaps marginally better in that we no longer have to take a geometric mean
of Q_o and Q_l.

We turn now to a parallel discussion of output indexes.

THEOREM 6. Suppose the parameters of DO and Dl defined by (102) satisfy
the following restrictions:

(103) (yeT A'yt)-lX'TCXt =1, t =0, 1;

(104) (yO)-lT 8° = O~;

(105) 0'1. (yl)-l = 0;

where the column vectors (y')-l == [(yD-l,(y~)-l, ... ,(y~)-l]T for t = 0,1.
Suppose also that the firm is engaging in competitive cost minimizing behavior
in the two periods 80 that the relations (96), (100) and (101) hold. Then the
Fisher ideal input index QF is equal to each of the theoretical input indexes
Q*o and Q*l defined by (97) and (98); i.e., we have

(106) QF(wO,wl,xO,X l ) =Q*O(xO,x l ) =Q*l(xO,x l ).

Proof: Note that the restrictions (103)-(105) imply that DO(yO, XO)

Dl (yl ,xl) =1. Now write the square of the Fisher input index as follows:

QF(WO,wl ,xO,xl )2 = [(wo/wo .xO).xl]/[(Wl/wl .x l ) .xO]
= [X1T\l", DO (yO, xO)]/[xoT \l1: Dl (yl , xl)]

using (101)
= (xlTCXO/yOT AOyO)/(XOICXl /ylT Alyl)

using (102)-( 105)
(107) = (yOT AOyO)-l /(ylT Alyl)-l

using C =CT

=(yOT AyO)-lX1TCxl/(ylT Alyl)-lxlTCxl
= (yOAyO)-lX1TCxl

using (103)
= [DO(yO, xlW

using (102) and (104)
(108) = [Q-o(xO,x l )j2

using (97)
= (yOT AOyO)-lXOTCxO/(ylT Alyl)-lXOTCxO

using (107)
=l/(ylT Alyl)-lXOTCxO

using (103)
= l/[Dl(yl, xOW

using (102) and (105)

(109) = [Q-l(xO,x l )]2

using (98).
Taking square roots of (108) and (109) yields (106).' Q.E.D.
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Assuming that d'(yl, Xl) was differentiable with respect to the components
of y, Caves, Christensen and Diewert [1982b; 1401] showed that the following
equalities hold:

For our next theorem, we shall require the hypothesis of revenue maxi­
mizing behavior on the part of the firm for periods 0 and 1; i.e., if p' is the
observed output price vector for period t and ;Cl, yt are the observed input and
output vectors respectively for period t, then we shall assume:

(123) dl(y,x) == [yT AY(XTClx)-l + a ' . yfj' . x- 1 yT B' x- lJi /2

where A and C ' are symmetric matrices and the parameters in (123) satisfy
the following restrictions:

We may now prove the following theorem which is an exact counterpart
to Theorem 6 in the previous section.

THEOREM 8. Suppose that the firm's output deflation function in period t,
d' , has the following functional form for t = 0,1:

I

t = 0,1.

t = 0,1

t = 0,1.

t =0,1.

fjl . (X1)-1 == 0,

pI . y' = r'(p', x'),

BO(XO)-l = OM;

y'T AY'{XlT C' ;CI)-l = 1,

p'/p'.y' = 'Vyd'(y', Xl),

rl(p, x) == maxy{p· y : ley, X2,'" ,XN) :5 xd,

(125)

and either the following restrictions are satisfied:

(124)

(122)

(121)

(120)

An interpretation for the theoretical index defined by (118) runs as follows.
Let 6° == cf(yl, XO). Then by definition (112), we have xy == gO(yl /0°, xg, ... ,x'lv)
From (117) we have xy = gO(yO, xg, " . ,x'lv). Thus the deflated period 1 out­
put vector yl /0° is "equivalent" using the period 0 technology to the period 0
output vector yO, and the deflation factor 00 == dO(yl, :to) = QO(yO, yl) is a
natural scalar measure of the size of yl relative to yO.

Similarly, let l/d1 = d1(yO, Xl). Then by definition (112), xl = gl(yOol,
x~,,,.,xjy) and by (117), xl = gl(yl,x~,,,.,xjy). Thus olyO is "equivalent"
to yl and 01 = l/d l(yO,x 1) == Ql(yO,yl) is a natural scalar measure of the size
of yl relative to yO.

The firm's period t revenue function r'(p, x) may be defined in terms of
the factor requirements function l as follows: given a vector of inputs x ==
(Xl, .. , ,XN) and a vector of positive output prices p == (PI, ... ,PM), define

(117) d'(yt,xt ) = 1, t==O,1.

Following the example of Caves, Christensen and Diewert [1982b; 1400), we
use the output deflation functions dt in order to define the following theoretical
Malmquist31 output indexes QO and Ql:

(118) QO(yO,yl) == ~(yl,xO)/do(yO,;cO)

= ~(yt,xo) using (117);

(119) Ql(yO,yl) == dl (yl,xl )/dl (yO,xl )

== l/d1(yO,x l ) using (117).

31The basic idea of these indexes appears to be in Hicks [1961) [1981; 256) and
they are defined geometrically in the two output case by Moorsteen [1961; 452].

conditions on the input deflation function D(y,;c) which was defined in the
previous section. Thus in the differentiable case, conditions analogous to (67)­
(74) hold for dl except that the roles of x and yare interchanged.

For x ~ 0, define the vector x-I == (;c11, ... , ;cN1) and define the following
distance function:

(113) d(y, x) == [yT Ay(xTCx)-l+a.yfj.x-lyTBx- 1p/2, A =AT, C =CT

where A, Band C are matrices of parameters and a and fj are vectors of
parameters.

The following theorem is analogous to Theorem 5 and can be proven in
the same manner.

THEOREM 7. Let y. ~ OM and x· ~ ON. Then for every a and fj such that

(114) a·y·::j:.O, fj.x·- 1 ::j:.0,

there exist symmetric matrices A and C such that

(115) y.T Ay· = 1, x·T Cx· = 1

and a matrix B such that

(116) y.T B = Or" Bx·- 1 = OM

and the output deflation function d defined by (113) is flexible at y., x·.

If we wish to relax the assumption of a constant returns to scale technology,
then we need only add an extra input to the list of inputs and fix its level; i.e.,
define XN+l == 1. Then dey, x) defined by (113) (where x is now an N + 1
dimensional vector) will be a flexible output deflation function in the class of
nonconstant returns to scale technologies.

We shall assume that the observed period t output and input vectors, y'
and :t' respectively, are efficient relative to the firm's period t technology; i.e.,
we assume that xi =g'(y', x~, . .. ,x~) for t =0,1. Then by (112), we shall
have:
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Suppose also that the firm is engaging in competitive revenue maximizing be­
havior in periods 0 and 1 so that the relations (121), (122) and (117) hold. Tllen
the Fisher output index QF defined by (4) is equal to each of the theoretical
indexes QO and Ql defined by (118) and (119); i.e., we have:

or the following restrictions are satisfied:

(126) B 1(X 1)-1 =OM; [30. (xO)-l =O.

We assume that in each period, either the firm's technology is subject to
constant returns to scale or it is subject to diminishing returns to scale but the
firm's pure profits are imputed to an artificial fixed factor.

Let Xl and yl be the observed input and output vectors for period t and
let cf(y, x) be the firm's period t output deflation function defined by (112) for
t = 0,1. Following Caves, Christensen and Diewert [1982b; 1402]. define the
following theoretical productivity indexes nO and n1;

8. An Alternative Economic Approach to Productivity Indexes

We can draw on the material of the previous two sections to define productivity
or efficiency indexes.

One approach would be to define a productivity index to be the ratio of the
Malmquist ,output index QO(yO, yl) or Ql(yO, yl) defined by (118) and (119)
divided by a Malmquist input index Q.0(xO,x1 ) or Q.l(XO,x1) defined by (97)
or (98). Thus there are four possible theoretical productivity indexes that could
be defined in this manner. In the two input, two output case, these theoretical
efficiency change indexes were suggested by Moorsteen [1961; 462] and perhaps
by Hicks [1961; footnote 4] in the general multiple input and oute,ut case.

Rather than follow this Hicks-Moorsteen approach to productivity indexes,
we shall follow the approach taken by Caves, Christensen and Diewert [1982b;
1401-1408] and use only the output deflation functions dl(y, x) defined in the
previous section by (112) in order to define tbeoretical productivity indexes.

The proof is analogous to the proof of Theorem 6 in the previous section.
We note that the restrictions (125) are consistent with dO being flexible at
(yO, xO) while the restrictions (126) are consistent with d1 being flexible at
(yl,x 1).

Theorem 8 is a Fisher index analogue to Theorem 2 in Caves, Christensen
and Diewert [1982b; 1401] which showed that the translog or Tornqvist output
index QT defined by (5) was equal to the geometric mean of QO and Ql provided
that the firm's distance functions cf had the translog functional form with
identical quadratic coefficients for the second order terms in In Yl, ... ,In YM.
Note that our present result does not require us to take a geometric mean of
QO and Ql. Note also that the matrix A which has the quadratic terms in Y
in dO(y, x) and d1(y, x) defined by (123) is constant across time periods. Thus
in both Theorem 8 and Theorem 2 of Caves, Christensen and Diewert, the
technologies in the two time periods cannot be completely different.

In the following theorem, we shall use more general versions of the output
deflation function d(y,x) defined by (81), which was shown to be a flexible
functional form in Theorem 7.

t = 0,1.'Y'~dl(y', Xl) = -WI/WI. x',(130)

(128) nO(xO,x 1 ,yO,yl) == cf(yl,x 1 )/dO(yO,xO)

= cf(yl,X 1) using (117);

(129) n 1(xO,x 1,yO,yl) == d1(yl,x 1)/d1(yO,xO)

=l/d1(yO,xO) using (117).

We can interpret (128) as follows. Let 6° =dO(yl,x 1). Then by definition
(112), x~ = gO(yl/6°,x~, ... ,x}..r). Thus the deflated period 1 output vector
gl/6° and the period 1 input vector xl are on the production surface for pe­
riod O. Of course, we also have x~ = gO(yO, xg, ... ,x~) so that the period 0
output vector yO and the period 0 input vector XO are on the period 0 pro­
duction surface. If there were a productivity improvement going from period 0
to 1, we would expect that the deflation factor 6° would be greater than 1 and
6° = dO(yt,x 1) = nO(xO,x 1 ,yO,yl) can serve as a measure of the magnitude
of the productivity improvement. If 6° = I, then the period 1 output-input
combination (yl, Xl) is on the period 0 production surface and there has been
no efficiency improvement.

To interpret (129), let 1/61 = d1(yO,xO). Then by definition (112), x~ =
gl (yO 61, xg, ,x~). This means that the inflated period 0 output vector
61 yO == (61yy, ,61yt) and the period 0 input vector xO are on the produc-
tion surface for period 1. Thus using the period 0 input vector, the period 1
technology can produce 61 times the period 0 output vector. Hence the blow
up factor 61 = l/d1(yO,xO) = n 1(xO,x 1 ,yO,yl) can serve as an index of the
productivity improvement.

In Theorem 9 below, we shall again assume revenue maximizing behavior
as in the previous section. Thus (121) and (122) must hold if dl(y',x') is
differentiable. We shall also assume cost minimizing behavior as in Section 6.
Under the assumption of cost minimizing behavior and a constant returns to
scale technology, Caves, Christensen and Diewert [1982b; 1403-1404] show that
the following relations must hold if cf is differentiable:

QF(PO,p1 ,yO,yl) = QO(yO,yl) = Ql(yO,yl).(127)
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where the parameter matrices A, BI and C, the parameter vectors 0'1 and (3'
and the parameter scalars 0'1 satisfy the following restrictions:

THEOREM 9. Suppose that the firm's output deflation function in period t ,
d l

I is defined as follows for t =0, 1:

(131) dl(y, x) == O'I[yT Ay(xTCx)-1 + 0'1 . y(31 . x- 1yT Blx- 1jl/2,

A = AT, C = CT

(132) O'I[ytT A yl(XtTCx' )-IP/2 = 1, t =0,1

= [yl. "VudO(l,xo)/yo. "VUd1(yl,x 1)]

/[(-I)x1 . "V r dO(yO,xO)/(-I)xo. "Vr d1(yl,x 1)]

using (122) and (130)

= [[(0'0)2 yIT Ayo /xOT CxO]/[(O'l )2 yOT Ayo /x iT Cx l )]

/ [[(0'0)2 XIT CxOyOT AyO(xOTCXO) -2]/[(0'1 )2xOTCx 1ylT Ayl(x lT Cx 1)-2)]

differentiating (131) and using (132)-(134)

and either the following restrictions a.re sa.tisfied:

or the following restrictions are satisfied:

(131)
= (0'0)2/(0'1)2 using A = AT, C =aT and (132)

= (0'0)2 ylT Ayl(x1TCx1)-1 /(0'1)2 ylT Ayl(xlT Cx 1)-1

= (0'0)2 ylT A yl(x 1TCX 1)-1 using (132)

= (0'0)2[ylT Ayl(x1TCx1)-1 + 0'0. yl(30. (x 1)-lylT BO(x1)-1)

using either (133) or (134)

(133)

(134)

BO(xo)-1 = OM; yOT BO = O~; 0'1. yl = 0;

(31 . (x 1)-1 = 0; 0'0. yl(30. (x 1)-1 = 0 and yOT B 1(xO)-1 = 0

B 1(X 1)-I=OM; yITBI=O~; aO.yo=O;

(30. (xO)-1 =0; 0'1. y0(31 . (XO)-l =0 and ylT BO(x l )-l =O.
= [dO(yl, Xl )]2 by definition (131)

The square of the Fisher productivity index is

Proof: The restrictions (132) and (133) or (132) and (134) imply that dt

defined by (131) satisfies the following restriction:

Suppose also that the firm competitively maximizes revenues given inputs and
competitively minimizes costs given outputs in each period.32 T1Jen the Fisher
productivity index PrF defined by (6) is equal to each of the theoretical pro­
ductivity indexes nO and n1defined by (128) and (129); i.e., we have

(135) QF(po, pi, yO, y1 )/QF(Wo,wi, xO,xl)

= nO(x O,x1,yO,yl) = n l (x O,x l ,yO,y1).

using (129).

(138)
= (nO(xO,x l ,yO,yl)]2 using (128)

= (0'0)2 yOT A yO(x OT CxO)-l /(0'1)2 yOT AyO(xOTCxO)-1 using (131)

= 1/(0'1)2 yOT AyO(xOTCxO)-1 using (132)

= 1/(0'1)2[yOT A yO(xOT CxO)-l +0'1. y0(31 . (xO)-l yOT B1(xO)-I)

using (133) or (134)

= 1/[dl (yO, xO)]2 by definition (131)

(139)
= [n l (xO,x l ,yO,yl)]2

t = 0,1.dl(yt,x t ) = 1,(136)

[QF(PO, pi, yO, yl )/QF(wo,Wi, xO,xl )]2

= [[(pO/pO. yO). yl)/[(pl/pl. yl). yO)]![[(wO/wO. xO). x1]/[(wl/wl. xl). xO)]

32These assumptions are implied by the assumption of competitive profit max­
imizing behavior in each period.

Q.E.D.

Taking square roots of (138) and (139) yields (135).
The restrictions (133) are consistent with dO being flexible at (yO, xO) and

the restrictions (134) are consistent with d l being flexible at (yl, xl). Thus the
above Theorem is a fairly close analogue to Theorem 3 of Caves, Christensen
and Diewert [1982b; 1404) which showed that the translog productivity index
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approach can at least provide a theoretical solution to the problem35 but the
empirical difficulties remain formidable.
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Prr defined by (7) was exactly equal to the geometric mean of the theoretical
~tQductivity indexes IIo and III defined by (128) and (129) provided that the

ISlance functions dO and dl had translog functional forms (with identical sec­
~n~ order coefficients). Our present result is perhaps a bit stronger in that we
n~ that PrF is equal to IIo and III (i.e., we do not have to take a geometric

rnean of nO and III).
p' Theorem 9 provides yet another strong justification for the use of the

ISher productivity index.

9. Conclusion
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.we have presented a number of justifications for the use of the Fisher output
mdelC QF, the Fisher input index QFand the Fisher productivity index PrF ==
~l'/QF' Theorem 1 presents a strong justification for the use of these indexes
r°ltl the viewpoint of the test approach.

th Using the economic approach to index number theory, Theorem 6 justifies
eUse of the Fisher input index while Theorem 8 justifies the use of the Fisher

;~tput index. Theorems 4 and 9 provide strong justifications for the use of the
lsher productivity index from the viewpoint of the economic approach.33

If we compare the test approach to productivity indexes with the economic
afPtoach, the following points emerge: (i) the test approach suffers from a lack
o cC)nsensus on what the appropriate tests or axioms should be; (ii) the eco­
DOnuc approach requires the assumption of competitive price taking behavior
and the assumption of constant (or diminishing) returns to scale. Thus both
ap~l"oaches have their weaknesses. However, we have presented strong justifi­
C:tl Clns for the use of the Fisher productivity index from both viewpoints, which
s °l.tld reduce objections to its use in many contexts.

We conclude by noting that both the economic and test approaches to the
m;~urement of productivity change make assumptions which are often not
sa l,~fied in empirical contexts such as: (i) all prices and quantities in the two
pertIQds are known with certainty;34 and (ii) there are no new inputs that are
usect in period 1 but not in period 0 and there are no new outputs that are
Pro~uced in period 1. With respect to the new good problem, the economic

~-~----------
~ny years ago, Denny [1980; 537) asked whether some of my translog exact

;gg~egation results could be generalized to other functional forms. At the time,
c°"uld not answer his question, but now Theorems 4, 6, 8 and 9 show that his

i.t~e~tion has an affirmative answer.
.. udents of accounting will know that this assumption is very suspect. For

~xal'::nple, consider the problems in estimating user costs for durable capital
mp~ts when there is rapid inflation and tax complications.

35In period 0, the quantity of the new good is obviously zero and its price is
set equal to that shadow price which would just cause the firm to demand or
supply a zero amount of that good in period O. The basic idea is due to Hicks
[1940; 114); see also Fisher and Shell [1972b; 101) and Diewert [1980; 498-503).


